干貨!詳解5種金屬3D打印技術(shù)原理和特點(diǎn)對比!
隨著科技發(fā)展及推廣應(yīng)用的需求,利用快速成型直接制造金屬功能零件成為了快速成型主要的發(fā)展方向。目前可用于直接制造金屬功能零件的主要金屬3D打印工藝有:包括選擇性激光燒結(jié)(Selective Laser Sintering, SLS)技術(shù)、直接金屬粉末激光燒結(jié)(Direct ?Metal ?Laser Sintering,DMLS)、選擇性激光熔化(Selective Laser Melting, SLM)技術(shù)、激光近凈成形(Laser Engineered Net Shaping, LENS)技術(shù)和電子束選擇性熔化(Electron Beam Selective Melting, EBSM)技術(shù)等。
一、選擇性激光燒結(jié)(SLS)
選擇性激光燒結(jié),顧名思義,所采用的冶金機(jī)制為液相燒結(jié)機(jī)制,成形過程中粉體材料發(fā)生部分熔化,粉體顆粒保留其固相核心,并通過后續(xù)的固相顆粒重排、液相凝固粘接實(shí)現(xiàn)粉體致密化。
?
SLS 技術(shù)原理及其特點(diǎn)
整個(gè)工藝裝置由粉末缸和成型缸組成,工作粉末缸活塞(送粉活塞)上升,由鋪粉輥將粉末在成型缸活塞(工作活塞)上均勻鋪上一層,計(jì)算機(jī)根據(jù)原型的切片模型控制激光束的二維掃描軌跡,有選擇地?zé)Y(jié)固體粉末材料以形成零件的一個(gè)層面。完成一層后,工作活塞下降一個(gè)層厚,鋪粉系統(tǒng)鋪上新粉,控制激光束再掃描燒結(jié)新層。如此循環(huán)往復(fù),層層疊加,直到三維零件成型。
?
SLS工藝采用半固態(tài)液相燒結(jié)機(jī)制,粉體未發(fā)生完全熔化,雖可在一定程度上降低成形材料積聚的熱應(yīng)力,但成形件中含有未熔固相顆粒,直接導(dǎo)致孔隙率高、致密度低、拉伸強(qiáng)度差、表面粗糙度高等工藝缺陷,在SLS 半固態(tài)成形體系中,固液混合體系粘度通常較高,導(dǎo)致熔融材料流動性差,將出現(xiàn) SLS 快速成形工藝特有的冶金缺陷——“球化”效應(yīng)。球化現(xiàn)象不僅會增加成形件表面粗糙度,更會導(dǎo)致鋪粉裝置難以在已燒結(jié)層表面均勻鋪粉后續(xù)粉層,從而阻礙SLS 過程順利開展。
?
由于燒結(jié)好的零件強(qiáng)度較低,需要經(jīng)過后處理才能達(dá)到較高的強(qiáng)度并且制造的三維零件普遍存在強(qiáng)度不高、精度較低及表面質(zhì)量較差等問題。在SLS出現(xiàn)初期,相對于其他發(fā)展比較成熟的快速成型方法,選擇性激光燒結(jié)具有成型材料選擇范圍廣,成型工藝比較簡單(無需支撐)等優(yōu)點(diǎn)。但由于成型過程中的能量來源為激光,激光器的應(yīng)用使其成型設(shè)備的成本較高,隨著2000 年之后激光快速成形設(shè)備的長足進(jìn)步(表現(xiàn)為先進(jìn)高能光纖激光器的使用、鋪粉精度的提高等),粉體完全熔化的冶金機(jī)制被用于金屬構(gòu)件的激光快速成形。選擇性激光燒結(jié)技術(shù)(SLS)已被類似更為先進(jìn)的技術(shù)代替。
二、選擇性激光熔化(SLM)
選擇性激光熔化的原理:
SLM技術(shù)是在SLS基礎(chǔ)上發(fā)展起來的,二者的基本原理類似。SLM技術(shù)需要使金屬粉末完全熔化,直接成型金屬件,因此需要高功率密度激光器激光束開始掃描前,水平鋪粉輥先把金屬粉末平鋪到加工室的基板上,然后激光束將按當(dāng)前層的輪廓信息選擇性地熔化基板上的粉末,加工出當(dāng)前層的輪廓,然后可升降系統(tǒng)下降一個(gè)圖層厚度的距離,滾動鋪粉輥再在已加工好的當(dāng)前層上鋪金屬粉末,設(shè)備調(diào)入下一圖層進(jìn)行加工,如此層層加工,直到整個(gè)零件加工完畢。整個(gè)加工過程在抽真空或通有氣體保護(hù)的加工室中進(jìn)行,以避免金屬在高溫下與其他氣體發(fā)生反應(yīng)。
?
選擇性激光熔化技術(shù)的優(yōu)勢 ?
在原理上,選擇性激光熔化與選擇性激光燒結(jié)相似,但因?yàn)椴捎昧溯^高的激光能量密度和更細(xì)小的光斑直徑,成型件的力學(xué)性能、尺寸精度等均較好,只需簡單后處理即可投入使用,并且成型所用原材料無需特別配制。選擇性激光熔化技術(shù)的優(yōu)點(diǎn)可歸納如下:
1.直接制造金屬功能件件,無需中間工序;
2.良好的光束質(zhì)量,可獲得細(xì)微聚焦光斑,從而可以直接制造出較高尺寸精度和較好表面粗糙度的功能件;
3.金屬粉末完全熔化,所直接制造的金屬功能件具有冶金結(jié)合組織,致密度較高,具 有較好的力學(xué)性能,無需后處理;
4.粉末材料可為單一材料也可為多組元材料,原材料無需特別配制;
5.可直接制造出復(fù)雜幾何形狀的功能件;
6.特別適合于單件或小批量的功能件制造。選擇性激光燒結(jié)成型件的致密度、力學(xué)性能較差;電子束熔融成型和激光熔覆制造難以獲得較高尺寸精度的零件;相比之下,選擇性激光熔化成型技術(shù)可以獲得冶金結(jié)合、致密組織、高尺寸精度和良好力學(xué)性能的成型件,是近年來快速成型的主要研究熱點(diǎn)和發(fā)展趨勢。 ?
三、電子束熔化(EBM)
電子束選擇性熔化(EBSM)原理
類似激光選擇性燒結(jié)和激光選擇性熔化工藝,電子束選擇性熔化技術(shù)(EBSM)是一種采用高能高速的電子束選擇性地轟擊金屬粉末,從而使得粉末材料熔化成形的快速制造技術(shù)。EBSM技術(shù)的工藝過程為:先在鋪粉平面上鋪展一層粉末;然后,電子束在計(jì)算機(jī)的控制下按照截面輪廓的信息進(jìn)行有選擇的熔化,金屬粉末在電子束的轟擊下被熔化在一起,并與下面已成形的部分粘接,層層堆積,直至整個(gè)零件全部熔化完成;最后,去除多余的粉末便得到所需的三維產(chǎn)品。上位機(jī)的實(shí)時(shí)掃描信號經(jīng)數(shù)模轉(zhuǎn)換及功率放大后傳遞給偏轉(zhuǎn)線圈,電子束在對應(yīng)的偏轉(zhuǎn)電壓產(chǎn)生的磁場作用下偏轉(zhuǎn),達(dá)到選擇性熔化。經(jīng)過十幾年的研究發(fā)現(xiàn)對于一些工藝參數(shù)如電子束電流、聚焦電流、作用時(shí)間、粉末厚度、加速電壓、掃描方式進(jìn)行正交實(shí)驗(yàn)。作用時(shí)間對成型影響最大。
?
電子束選擇性熔化的優(yōu)勢
電子束直接金屬成形技術(shù)采用高能電子束作為加工熱源,掃描成形可通過操縱磁偏轉(zhuǎn)線圈進(jìn)行,沒有機(jī)械慣性,且電子束具有的真空環(huán)境還可避免金屬粉末在液相燒結(jié)或熔化過程中被氧化。 ?電子束與激光相比,具有能量利用率高、作用深度大、材料吸收率高、穩(wěn)定及運(yùn)行維護(hù)成本低等優(yōu)點(diǎn)。EBM技術(shù)優(yōu)點(diǎn)是成型過程效率高,零件變形小,成型過程不需要金屬支撐,微觀組織更致密等 ?電子束的偏轉(zhuǎn)聚焦控制更加快速、靈敏。激光的偏轉(zhuǎn)需要使用振鏡,在激光進(jìn)行高速掃描時(shí)振鏡的轉(zhuǎn)速很高。在激光功率較大時(shí),振鏡需要更復(fù)雜的冷卻系統(tǒng),而振鏡的重量也顯著增加。因而在使用較大功率掃描時(shí),激光的掃描速度將受到限制。在掃描較大成形范圍時(shí),激光的焦距也很難快速的改變。電子束的偏轉(zhuǎn)和聚焦利用磁場完成,可以通過改變電信號的強(qiáng)度和方向快速靈敏的控制電子束的偏轉(zhuǎn)量和聚焦長度。電子束偏轉(zhuǎn)聚焦系統(tǒng)不會被金屬蒸鍍干擾。用激光和電子束熔化金屬的時(shí)候,金屬蒸汽會彌散在整個(gè)成形空間,并在接觸的任何物體表面鍍上金屬薄膜。電子束偏轉(zhuǎn)聚焦都是在磁場中完成,因而不會受到金屬蒸鍍的影響;激光器振鏡等光學(xué)器件則容易受到蒸鍍污染。
四、激光熔覆式成型技術(shù)(LMD)
激光熔化沉積(Laser ?Metal ?Deposition,LMD)于上世紀(jì)90年代由美國Sandia國家實(shí)驗(yàn)室首次提出,隨后在全世界很多地方相繼發(fā)展起來,由于許多大學(xué)和機(jī)構(gòu)是分別獨(dú)立進(jìn)行研究的,因此這一技術(shù)的名稱繁多,雖然名字不盡相同,但是他們的原理基本相同,成型過程中,通過噴嘴將粉末聚集到工作平面上,同時(shí)激光束也聚集到該點(diǎn),將粉光作用點(diǎn)重合,通過工作臺或噴嘴移動,獲得堆積的熔覆實(shí)體。
LENS技術(shù)使用的是千瓦級的激光器,由于采用的激光聚焦光斑較大,一般在1mm以上,雖然可以得到冶金結(jié)合的致密金屬實(shí)體,但其尺寸精度和表面光潔度都不太好,需進(jìn)一步進(jìn)行機(jī)加工后才能使用。激光熔覆是一個(gè)復(fù)雜的物理、化學(xué)冶金過程,熔覆過程中的參數(shù)對熔覆件的質(zhì)量有很大的影響。激光熔覆中的過程參數(shù)主要有激光功率、光斑直徑、離焦量、送粉速度、掃描速度、熔池溫度等,他們的對熔覆層的稀釋率、裂紋、表面粗糙度以及熔覆零件的致密性都有著很大影響。同時(shí),各參數(shù)之間也相互影響,是一個(gè)非常復(fù)雜的過程。必須采用合適的控制方法將各種影響因素控制在溶覆工藝允許的范圍內(nèi)。
五、直接金屬激光成形(DMLS)
SLS制造金屬零部件,通常有兩種方法,其一為間接法,即聚合物覆膜金屬粉末的SLS;其二為直接法,即直接金屬粉末激光燒結(jié)(DirectMetalLaserSintering, DMLS)。自從1991年金屬粉末直接激光燒結(jié)研究在Leuvne的Chatofci大學(xué)開展以來,利用SLS工藝直接燒結(jié)金屬粉末成形三維零部件是快速原型制造的最終目標(biāo)之一。與間接SLS技術(shù)相比,DMLS工藝最主要的優(yōu)點(diǎn)是取消了昂貴且費(fèi)時(shí)的預(yù)處理和后處理工藝步驟。 ?
?
直接金屬粉末激光燒結(jié)(DMLS)的特點(diǎn) ?
DMLS技術(shù)作為SLS技術(shù)的一個(gè)分支,原理基本相同。但DMLS技術(shù)精確成形形狀復(fù)雜的金屬零部件有較大難度,歸根結(jié)底,主要是由于金屬粉末在DMLS中的“球化”效應(yīng)和燒結(jié)變形,球化現(xiàn)象,是為使熔化的金屬液表面與周邊介質(zhì)表面構(gòu)成的體系具有最小自由能,在液態(tài)金屬與周邊介質(zhì)的界面張力作用下,金屬液表面形狀向球形表面轉(zhuǎn)變的一種現(xiàn)象.球化會使金屬粉末熔化后無法凝固形成連續(xù)平滑的熔池,因而形成的零件疏松多孔,致使成型失敗,由于單組元金屬粉末在液相燒結(jié)階段的粘度相對較高,故“球化”效應(yīng)尤為嚴(yán)重,且球形直徑往往大于粉末顆粒直徑,這會導(dǎo)致大量孔隙存在于燒結(jié)件中,因此,單組元金屬粉末的DMLS具有明顯的工藝缺陷,往往需要后續(xù)處理,不是真正意義上的“直接燒結(jié)”。
為克服單組元金屬粉末DMLS中的“球化”現(xiàn)象,以及由此造成的燒結(jié)變形、密度疏松等工藝缺陷,目前一般可以通過使用熔點(diǎn)不同的多組元金屬粉末或使用預(yù)合金粉末來實(shí)現(xiàn)。多組分金屬粉末體系一般由高熔點(diǎn)金屬、低熔點(diǎn)金屬及某些添加元素混合而成,其中高熔點(diǎn)金屬粉末作為骨架金屬,能在 DMLS 中保留其固相核心;低熔點(diǎn)金屬粉末作為粘結(jié)金屬,在 DMLS 中熔化形成液相,生成的液相包覆、潤濕和粘結(jié)固相金屬顆粒,以此實(shí)現(xiàn)燒結(jié)致密化。 ?